A Combinatorial Characterization of Tight Fusion Frames

نویسندگان

  • MARCIN BOWNIK
  • EDWARD RICHMOND
چکیده

In this paper we give a combinatorial characterization of tight fusion frame (TFF) sequences using Littlewood-Richardson skew tableaux. The equal rank case has been solved recently by Casazza et al. [8]. Our characterization does not have this limitation. We also develop some methods for generating TFF sequences. The basic technique is a majorization principle for TFF sequences combined with spatial and Naimark dualities. We use these methods and our characterization to give necessary and sufficient conditions which are satisfied by the first three highest ranks. We also give a combinatorial interpretation of spatial and Naimark dualities in terms of Littlewood-Richardson coefficients. We exhibit four classes of TFF sequences which have unique maximal elements with respect to majorization partial order. Finally, we give several examples illustrating our techniques including an example of tight fusion frame which can not be constructed by the existing spectral tetris techniques [5, 7, 8]. We end the paper by giving a complete list of maximal TFF sequences in dimensions ≤ 9.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A recursive construction of a class of finite normalized tight frames

Finite normalized tight frames are interesting because they provide decompositions in applications and some physical interpretations. In this article, we give a recursive method for constructing them.

متن کامل

Continuous $k$-Fusion Frames in Hilbert Spaces

The study of the c$k$-fusions frames shows that the emphasis on the measure spaces introduces a new idea, although some similar properties with the discrete case are raised. Moreover, due to the nature of measure spaces, we have to use new techniques for new results. Especially, the topic of the dual of frames  which is important for frame applications, have been specified  completely for the c...

متن کامل

The study on controlled g-frames and controlled fusion frames in Hilbert C*-modules

Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...

متن کامل

FUSION FRAMES IN HILBERT SPACES

Fusion frames are an extension to frames that provide a framework for applications and providing efficient and robust information processing algorithms. In this article we study the erasure of subspaces of a fusion frame.  

متن کامل

Construction of continuous $g$-frames and continuous fusion frames

A generalization of the known results in fusion frames and $g$-frames theory to continuous fusion frames which defined by M. H. Faroughi and R. Ahmadi, is presented in this study. Continuous resolution of the identity (CRI) is introduced, a new family of CRI is constructed, and a number of reconstruction formulas are obtained. Also, new results are given on the duality of continuous fusion fram...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014